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Hybridization and Localization in the Tight-Binding Approximation
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In this paper we derive a procedure for determining the number of centers involved in the
various ¢ bonds of a molecule and the corresponding hybrid atomic orbitals. The procedure is
rigorous within the frame of the tight-binding approximation under the assumptions that:
a) the binding atomic orbitals of a given atom are all described by the same Coulomb integrals,
possibly with the exception of & orbitals; b) the bond integrals between any two atomic
orbitals are proportional to the corresponding overlap integrals, through a constant which
may depend upon the particular pair of atoms under consideration.

It is claimed in this paper that the use of the procedure described in it makes it possible to
decide, knowing the appropriate overlap integrals, to what extent the o-system of a molecule
can be described in terms of two or three-center bonds, and what the best hybrid atomic
orbitals for such a description shall be. The calculations are simple because they only involve
the diagonalization of a number of » X n matrices, n being the number of atomic orbitals with
which one atom is included in the calculation. .

Es wird ein Verfahren angegeben, um die Zahl der an den verschiedenen ¢-Bindungen
eines Molekiils beteiligten Zentren und die entsprechenden atomaren Hybridfunktionen zu
bestimmen. Das Verfahren ist im Rahmen der Naherung der lokalisierten Bindungen unter der
Annahme exakt, daf a) die bindenden Einelektronenfunktionen eines gegebenen Atoms alle
das gleiche Coulomb-Integral haben (eventuell mit Ausnahme von s-Funktionen) und b) die
Bindungsintegrale zwischen je zwei Atomfunktionen den entsprechenden Uberlappungs-
integralen proportional sind; die Proportionalititskonstante kann vom speziellen Atompaar
abhéngig sein.

Das hier angegebene Verfahren erlaubt, bei Kenntnis der entsprechenden Uberlappungs-
integrale zu entscheiden, inwieweit das o-System eines Molekiils durch Zwei- oder Drei-
zentrenbindungen beschrieben werden kann und welches die fiir eine solche Beschreibung
besten Atomhybridfunktionen sind. Die Rechnungen sind einfach, da sie nur die Diagonali-
sierung einer Reihe von nX n-Matrizen verlangen, wobei # die Zahl der Einelektronenatom-
funktionen ist, mit der ein Atom in die Rechnung eingeht.

Dans cet article, on établit un procédé pour déterminer le nombre de centres compris dans
les différentes liaisons ¢ d’une molécule et les orbitales atomiques hybrides correspondantes. Le
procédsé est rigoureux dans le cadre de l'approximation des orbitales moléculaires sous les
hypothéses suivantes: a) les orbitales atomigues de liaison d’un atome donné sont toutes
décrites par les mémes intégrales coulombiennes b) les intégrales de liaison entre deux orbitales
atomiques sont proportionnelles aux intégrales de recouvrement correspondantes, avec une
constante qui peut dépendre de la paire d’atomes considérée.

L’emploi du procédé décrit dans cet article devrait permettre de décider, étant données les
intégrales de recouvrement appropriées, dans quelle mesure le systéme-o d’une molécule peut
&tre décrit comme formé de liaisons & 2 ou 3 centres, quelles devraient étre les orbitales ato-
miques hybrides les meilleures pour une telle description. Les calculs sont simples, du fait
qu’ils comprennent seulement la diagonalisation d'un certain nombre de matrices n X n, n étant
le nombre d’orbitales atomiques avec lequel chague atome intervient individuellement dans le
caleul.

* Present address: Istituto di Fisica Teorica, University of Naples, Mostra d’Oltremare,
Pad. 19, Naples, Italy
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Introduetion

Semi-empirical tight-binding calculations are usually carried out only on the
7t electrons of unsaturated molecules. The reason for this limitation is to be sought,
at least in part, in the various complications that arise if one tries to extend the
method to the o bonds, especially if one wants to derive explicitly from this type of
calculation information on such features of the o electron systems like hybridization
and bond localization.

These complications, however, are not as serious as it may seem at first sight.
In fact, the procedure described in this paper makes it possible to determine in a
unique way a hybridized basis for any system of atoms, in full agreement with the
principle of maximum overlap. As a consequence of this, the separation of mole-
cular orbitals into different classes becomes possible as a well-defined approxi-
mation, so that, in addition to permitting an easy treatment of all the binding
electrons, the new procedure gives a precise criterion for discussing on the basis of
calculations such questions as orbital following, number of centers participating
in a bond, etc.

Notation and Statement of the Problem

In a complete tight-binding approximation, the customary atomic orbital
basis usually consists of many orbitals per atom: therefore the basis y can be
assumed to consist of subsets y,, where o denotes a single atom of the molecular or
crystal network:: i.e. the elements of y, are atomic orbitals y,q all belonging to a.

We shall assume that all the elements of y are pure orbitals, all referred to a
single system of coordinate axes, but centred on the corresponding nuclei (e.g. all
the 2pz orbitals will be parallel to a given z-axis). The overlap matrix of a given
subset y, with itself will be assumed to be the identity; that with another subset
76 Will be obtained from the usual tables via appropriate unitary transformations,
Tub: 8o that

Saa = (g %a) = I 1

Sav = (4 210) = T4y S8 Tao M
where 89, is the overlap matrix obtained when the subsets y4, x» are referred to a
system whose z-axis passes through the centers ¢ and b. 8%, and hence Sgp, is
usually not zero, because the elements of y are supposed to be strictly one-centre
functions.

In general, the basis y can be replaced by any new basis abtained from it via a
non-singular transformation U preserving the norm of the basis elements; this
property is particularly interesting when the transformation U does not combine
elements belonging to different subsets, and is unitary; for, in that case, those
features of the subsequent calculation which depend on the idea that the elements
of a y, are eigenfunctions belonging to degenerate eigenvalues of an atomic
operator are not affected by the change of the basis. Such a transformation gives
what is called a hybrid basis, and is a block diagonal transformation, each block of
which, Uy, is unitary.

The new basis y’ will then be:

2= (aUp x2Us - o5 avUn), (2)
and Syp will change into:
w = Ug Sap Up. (3)
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Since there are infinitely many possible U’s, a special choice of a particular U must
derive from particular requirements. For the purpose of introducing hybridization
in the ordinary sense we shall require that the transformation U shall transform
the matrix 8 so that it comes as close as possible to the form of a block diagonal
matrix with 2 x2 blocks, each involving two different centers.
This condition has a physical meaning if the matrix H of the tight-binding
equation
HO=8CE 4)

(H being the matrix representation of the effective one electron Hamiltonian in
the basis y, ¥ its diagonal form, and C the transformation which takes H into Z,
subject to the condition O+ § C = I) has the same structure as §: then the
condition just introduced essentially means that we are looking for a new basis
which will allow us to treat our electron system as far as possible as a system of
independent two-centre two-orbital systems. If this new »’ canbedefined uniquely,
it will automatically tell us whether the molecular orbitals obtained from (4)
can indeed be treated as two-centre orbitals, and, if this is not so, how many
centres are involved in the different sets of molecular orbitals obtained from (4).

Hybridization in a Diatomic Molecule

Many aspects of the problem stated above can be clarified by a discussion of a
diatomic molecule.

Let the two atoms @ and b enter the MO-LOAO calculation each with four
orbitals, so that the basis of pure orbitals will be:

X = (284 2pay 2pm, 2p7;, 255 2pay 2pme 2pm;) (5)

where the notation has the customary meaning. Let us consider first the overlap
matrix and the problem of its block diagonalization. First of all, we remark that
the two s and the two 7’ orbitals naturally give separated blocks, so that we can
reduce the basis in which we are interested to

% = (284 2p0g 238 220017) (6)

The corresponding overlap matrix will have the structure:

I | Sw
. <S+I> 5 (7)

S (25q, 255) S (250, 2pob) ) (8)
8 (2poa; 25) S (2p0a, 2pov) ) *

with
Sab E(

Let us now apply the transformation U defined in.(-.‘),’) to . The new overlap matrix,

will be:

. I Uuis

S’=< . gU“S“”gf’-), ©)
Ut SaUal I

where, in agreement with our previous remarks, we have set

v (U“O) (10)
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U, and Uy are, in our particular case, unitary transformations of the second
order. Therefore, they will be defined by angles @, and ¢p. If U transforms y into
the basis

%" = (hag hoo P1p hap) (11)
we may impose that
S (hia, haa) = 8 (haa, hrp) = 0 (12)
and, under these circumstances, 8’ is evidently a block diagonal matrix. This
transformation is always possible, because we have two variables ¢, and g, to be
evaluated for the conditions (12). Now, the matrix
H = (y*, #y)=U"HU (13)
cannot be diagonalized in blocks similar to those obtained in S by the choice of
@q and gy satisfying (12), unless the off-diagonal elements of H are all proportional,
through the same constant k, to the corresponding elements of S, and unless the
diagonal elements of H corresponding to different orbitals of a given atom are all
equal to one another.

This is the most important conclusion of the discussion of our problem for a
diatomic molecule, because it can be generalized to the case of polyatomic systems.
Therefore, anticipating the results of the following section, we can state that the
concept of hybridization follows naturally from the quest for a basis affording the
highest possible degree of localization in the tight-binding approximation, under
the assumptions that: a), the orbitals of a given atom correspond to the same
values of the integrals

Kua = _/ Loa F st fua 0T = Xa (14)
b) that all the integrals f,4,,s = / Kow € xwp dv between any pair of different

orbitals are proportional to the corfesponding overlap integrals:

ﬂya, vh = kab S/}.H,,vb (15)
where kq, may depend upon the particular.pair of atoms under consideration
(Mulliken approximation [2]).

Hybridization in a Polyatomic Molecule
Let us now turn our attention to the problems of a polyatomic molecule. As

before, let us divide our basis y into subsets x4, 75, - - - relating to individual atoms.
The matrices S and H will have the forms:

------------------------------------------------ r . (16)
In principle, our problem calls for a bloek dlagonal tkransformatlon U of the basis y
that will leave the diagonal blocks ofS and H unchanged and transform the
remaining part of the matrix so that eachrow/and column contain only one element.
In general, it is impossible to obtain this result in a rigorous way. It may happen.
to be realized, at least approximately, in certain specific casés. Our problem in
thls section is just that of elaborating a general procedure for defining the matrix U
so that it will indeed give the result in question to the extent to which this is
possible.
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We have already concluded that assumption (15) is a necessary condition for
this type of problem. Therefore, if our transformation changes a block Sy, of Sin a
certain way, the same result will hold for H, as is seen from (16), if, as it happens,
the factors «g, op and kgp are numbers.

Let us now apply the transformation U to H. We obtain:

I U8, U, 1U;8,U,
F=Ur8U=(U; 8,0, 1T U8, U (17)

U+S+UU S+U 1

The blocks we have in §” are still 4 x 4 blocks* We Would reach an ideal
situation (in the sense stated above) if we could make the rows of the matrix &
contain only one off-diagonal element each, these elements never being in the
same columns. This requirement may be expressed (without any loss in generality)
as simply that, e.g., the matrix Sy, = U} Sqp Up should have only its first diagonal
element different from zero, the matrix S, should have only its second diagonal
element different from zero, ete. This requirement cannot be satisfied. Therefore,
we must modify it by imposing only that in the submatrix

L
the first row and the fifth row should contain only one off-diagonal element. This
would correspond to forming one “localized” bond between o and b, if the rest of
&’ were not there: as will be seen, even this modest requirement cannot be
rigorously satisfied.

The structure we want for ;SN’M, is

;mbooo

and, since EM, is symmetrie, this amounts to requiring that:

This obviously corresponds to the requirement

(U; Sab Ub)lv = Zab 611'
B (Ub+ Sa?, Ua)lv = Aab 611}

* We confine our considerations to the case where y. contains only 4 orbitals

(19)
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that is:

Uk Sap Up = Agp (1000) (20)
(where U} is the transpose of the first column of U,), and

U;i S;é Ua = Za,b (1000) (21)

Multiplying (20) and (21) by U,” and U on the right, we finally have:
U;i Sab = ﬂ.ab UI;;
Ul;’i S{j}) = Aap U;’l (22)
and, consequently, substituting and transposing,
Sap S;}, Uy = /logzb Uy
St Sup Upy = 42 Upy (23)
Egs. (23) imply that Uy, and Uy, must be eigenvectors Uy and Uy, of Sy, S and
8% Sap. Egs. (23) define Uy, and Uy, with the additional condition that 12, should
be the highest eigenvalue of the matrices in question.

So far, we have considered the matrix §ﬂb of Eq. (18). If we turn now to the
total matrix (17), we may impose the same conditions (20) and (21) on the second
rows of S;, and 8/1, and this will give additional equations like (23) for Ugy, Ug,,
ete., until we have exhausted four conditions per atom*. However, the result will
be in general a set of equations not compatible with the condition that Uy, Uy, ete.,
should be unitary. In general, the matrices Syp, Sge, ete. do not commute, and
hence Uy, Ugy, Ugs, Uy, cannot be the columns of a unitary U,. Therefore, we
must find another transformation U, which will differ as little as possible from U,

but will be unitary. This can be obtained by requiring that:
a) The angles between U, and U, U,sg and Uy, etc., shall be as small as
possible; .
b) Ug: shall be closer to Uy, the higher the eigenvalue corresponding to Uy.
This leads to the condition:
d {Zz [/‘Lzz ((7; Um' + U;; Um‘) ——Zj ]lf@;j U;; Uaj] } =0 -
whence one gets
Ua Aﬁ - Ma Ua (24:)
A7 being the diagonal matrix whose non-zero elements are 12, = 12, A2, = 12 , etc.
Eq. (24) can be solved by setting U, = V, W, where V, and W, are unitary
matrices. Then, if m, is the diagonal form of M, (which we will assume to be
symmetric), we write:
My = VamgVs - (25)
Therefore, (24) reads
Uy di = Vama W, .

* Although the non-vanishing overlap matrices of an atom with the other atoms of a given
molecule are often more than 4, only four hybrids can be formed in our case, and therefore only
four conditions can be imposed. In accordance with the idea that we wish to reproduce the
chemical formula of a compound, it will be convenient to take into account only the matrices
corresponding to atoms directly bound to each other in the ordinary chemical formula:
therefore, if an atom is only linked to two or three other atoms, the remaining values of 22
will be assumed to be zero. The *“lone-pair” hybrids will then follow directly from the ortho-
gonality conditions imposed through the procedure given below.
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This is equivalent to:
Up A2 Wy = Vymg,
9“ _“I_ a ativg (26)
Aa Ua, Va = Wama.

This in turn gives
Ag [7_2— ﬁu{lg Wa = Wamz,
UnAZU TV = VymZ,

so that our problem is reduced to two eigenvalue problems.

Combining all the equations corresponding to (23) with (27) with the elements
of A% equal to the highest eigenvalues of the corresponding equations of the type
(23), we obtain finally the block diagonal unitary matrix U, which may be called
the “hybridization’ matrix.*

It will be seen that the conditions (23) happen to be similar to those given by
Lyxros and ScamMeisivg [4].

27)

Details of Computations

The procedure outlined above is straightforward, and does not involve any
particular computational problem. We will only give here the explicit form of the
matrix Typ of eq. (1).

As has been mentioned, if the atomic orbitals are taken parallel to a given
reference system zzy, the overlap matrix between two atoms SY, is transformed
into Syp by the unitary transformation**

1 0 0 0

0 I m %
Tw=|o —m , _mn (28)

Vg P

0 " 0 _l_

P P

where [, m, n, are the projections of the unit vector associated to the distance bet-
ween ¢ and b on the axes z, z, ¥, and

p= Vet n2.
This transformation can be ignored in most manipulations required for finding the'

. . R o s o+ . .
eigenvalues and eigenvectors of .the matrices Sy5.Sep and Spp Sep. For instance, if
Cyp is a unitary transformation, '

Car Saty Su Cap = Cas Tty Son Sop T Clav

Therefore, if Cyp is the transformation which diagonalizes Sap Sap, O = Tup Cup
is the transformation which diagonalizes SJ;” S?, and
Cap =T €9, . (20)

iah ~dl
* Tt is-easily proved that-one must ensure that ma=V+t. U, A% Wa i a diagonal matrix
with non-negative elements. This condition may require a change in the signs of the columns-
of W with respect; to the signs they have after the diagonalization of Eq. 27.
- ** The parallel pz orbitals are supposed to point in the same direction, so that their overlap
will be negative in 8%p.
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Applieations

To make possible a better evaluation of the scope of the procedure suggested in
this paper we give here two simple examples. We show first of all that the possi-
bility of three-center bonds follows automatically from the above procedure. This
is immediate if we consider a system of three atoms, a, b, ¢, with the following
basis orbitals:

y = (284 2p0q 1sp 25, 2p0e) -
The 2px and 2pn’ orbitals are excluded because the system is planar. The matrix §
will then be
1 0 Sa O 0
0 1 b 0 0
S = Sub w1 Spe — S,
0 0 Spe 1 0
0 0 —8, 0 1
where
Sop = S (284, 15p) S} = S (2poy, lsp)
Sbc =8 (18(;, 280) S;,c = l S (181;, 2]90‘6)1

The overlap integrals between a and ¢ are neglected in S for the sake of simplicity.

Now,
v (8% SapSgp\  [cose sing\ (8% 4-SF 0) [cos @ —sin @
Sap Sa = S8y N2/ \sing cosg 0 0/ \sin p cosg
Sl
with tg ¢ = -2
gy Sup
and

g S5 ~—SpeShe| _ cgsﬁ —sind\ (S +82 0 cos ¥ sind
be Poe =\ —8pShe Sz, sind®  cos¥ 0 0/ \—sin ¢ cos &

7
Sbc

be

with tg ¢ = —

The general procedure given above gives therefore:

cos ¢ —sin @ 0 0 0
singp cosg 0 0 0
U= 0 0 1 0 0
0 0 0 cos ¢ sin 9
0 0 0 —sind cos ¥
and hence
L0 ySgesg 00
0 1 0 0 0
= V84+82 0 1 VS5 + 8% 0
0 0 V834852 t 0
0 0 0 0 1

Here it is evident that, if |/.S2, + 822 and V8%, + S;2 are of the same order of
magnitude, neither can be neglected, and we have thus derived from the matrix S
a matrix 8’ corresponding to a three-centre bond.
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This three-centre bond may not exist in reality if one of the two square roots
is much smaller than the other, a situation which is possible if the distances ab, bc
for which the energy is at a minimum are much different from each other.

The inclusion of a strong bond between ¢ and ¢ in S also changes the results,
because of the dependence of U, on both S, and S;.: however, it is clear that
this change does not affect the qualitative conclusion just reached, that many-
center bonds are indeed predicted in certain cases by the procedure under dis-
cussion. ‘ .

We give now a numerical example, in order to give an idea of the changes one
obtains in § by passing to U+SU. We consider here the molecule NF,, with

tetrahedral angles FNF and a distance R(NF)= 1.37 A. The matrices Spp are
negligible, (the highest eigenvalue of Siz Spx is 0.7317-10-8, to be compared with
the highest eigenvalue of Syr S¥r, Which is 0.2386). Therefore the calculation of
hybridization matrix U requires the full procedure only for the block Uy, whereas
the blocks Up; are given directly by the eigenvectors of Sy Syr. After all the
calculations are carried out, Uy takes the form

0.52912 052912 0.52912 0.40008

0.23099  0.23099  0.23099 —0.91648 -
Un = (2sv) 2020 2p2) 2Pya) | o 0.70711 —0.70711 0

0.81650 —0.40825 —0.40825 0

where the 2 axis is chosen as the axis of the molecule, and the zy plane contains
one F atom. The fact that there are three equivalent hybrids is just a consequence
of the symmetry of the molecule: on the other hand, the p characters of the various
hybrids are a direct consequence of the values of the overlap integrals. The p
character of the lone pair hybrid is 0.84, which indicates for the NF; molecule a
rather high lone pair moment; the p character of the binding hybrids is 0.72, the p
character of a tetrahedral hybrid being 0.75.
As to the overlap matrix, we give here the overlap matrix for one NF pair:

0.48562 0.00097 0 —0.00558
Stp = 0.03732 —0.00644 +0.07256 —0.03631
0.03732 —0.00644 —0.07256 -—0.03631
0.00130 —0.00531 0 —0.08867

This matrix has the form we had required in order to derive Eq. (19) within 19,
and can be considered as containing only one non-zero element within 20%, of its
highest element. This is not a great accuracy: however, it is not much less than the
accuracy one would expect for the description of a molecule in terms of localized
bonds. In other words, even within the atomic orbital picture, one must consider
the localized bond picture as a first order approximation whenever it is possible to
use it; and this is clearly what appears from an inspection of Sy .

Conclusion

We have shown in the present note that it is possible to obtain the hybrids and
the degree of localization of bonds for any ¢-system with the only knowledge of the
overlap integrals between the orbitals of the various atoms, under the assumption
that, for a given pair of atoms, the bond integrals between the various atomic
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orbitals are proportional to the corresponding overlap integrals. This leads natu-
rally to the criterion of maximum overlap and the resulting hybrids are deter-
mined uniquely in every case by diagonalization of a number of matrices whose
order is 4, or 9 if d-orbitals are included in the calculations. The procedure gives
both the best hybrids and the new overlap matrix between them. Therefore it
makes possible a decision as to the extent to which the system under study can be
treated as a system of independent 2-, 3-, ---, n- centre bonds. Thus, for
example, the 3-centre bonds postulated by EBErRHARD, CRAWFORD and LipscoMB
[3]to explain the properties of boron hybrids follow immediately from the above
procedure.

In order to evaluate energies from the new overlap matrix the Coulomb inte-
grals and the proportionality constants between bond and overlap integrals should
be evaluated. If the system under study can be treated as a system of two centre
bonds, the values suggested in a previous paper of ours [1] can be used, because,
even if those values were given for calculations neglecting overlap, there is a com-
plete equivalence between these and those including overlap, under the assamp-
tions made here, as was shown by the author in a previous paper [2].

In any case, it is interesting that complete information on the hybrids can be
obtained directly with the only knowledge of overlap integrals.
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